If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+30x+4=0
a = 16; b = 30; c = +4;
Δ = b2-4ac
Δ = 302-4·16·4
Δ = 644
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{644}=\sqrt{4*161}=\sqrt{4}*\sqrt{161}=2\sqrt{161}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-2\sqrt{161}}{2*16}=\frac{-30-2\sqrt{161}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+2\sqrt{161}}{2*16}=\frac{-30+2\sqrt{161}}{32} $
| 5= r−63/6 | | 18m=2 | | z/3+11=13 | | 5x-22=3x+2+4x-10 | | 2.75a-6+1/2=3.4a+20 | | 9/11x=54/77 | | 3x2=5x-2=0 | | 6x+2-2x=1 | | 4(x+2)=124 | | 20700/x=1.2 | | ((2)/(2x)+5)=(4/x) | | 3x-2+7=36 | | j/3−3=1 | | 1600=400+.15s | | 7.8+2(0.75m+0.4=-6.4m+4(0.5m-0.8) | | j3−3=1 | | 10x+8.3=-1.7 | | 2(4y-7)=66) | | j/2+8=10 | | 15x-7=37 | | -5h+60=3h+30 | | j/4+2=5 | | 18+67+9x=166 | | 12x-21=9x | | 200=30h+65 | | 18-4x=70 | | 85+x+11=180,x | | 85+x+11=180 | | T=1,200+0.08v | | 21+48+5x=94 | | 5y-20=20 | | 2.5*x=15 |